A derivation of some recently discovered relations involving 3-j symbols

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1977 J. Phys. A: Math. Gen. 101059
(http://iopscience.iop.org/0305-4470/10/7/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 14:01

Please note that terms and conditions apply.

A derivation of some recently discovered relations involving 3- j symbols

John D Morgan III \dagger
Theoretical Chemistry Department, University of Oxford, 1 South Parks Road, Oxford OXI 3TG, UK

Received 23 December 1976, in final form 18 March 1977

Abstract

Some recently discovered identities involving 3-j symbols are derived from the equation $1=r_{12} / r_{12}$. Although the derivation applies only to non-negative even z, the result is extended to complex z since a rational function which has infinitely many zeros vanishes identically. A few summations similar to the previously discovered ones are discussed, and it is noted that application of the Regge symmetry to this class of summations brings them into a more familiar form.

Recently it has been proved that
$S_{l, J}(z)=\sum_{l^{\prime}=0}^{i}\left(\frac{z(2 l+z+1)}{(2 l+z)(z-1)} \frac{1}{2 l^{\prime}+z+1}-\frac{1}{2 l^{\prime}+z-1}\right)\left(\begin{array}{ccc}l & l^{\prime}+J & l-l^{\prime}+J \\ 0 & 0 & 0\end{array}\right)^{2}=0$
for all non-zero z such that the sum makes sense, where J is a natural number and l is a natural number divided by 2 (Morgan 1976, to be referred to as II). The particular cases of $z=0$ and $z=2$ have been discussed previously (Morgan 1975, Rashid 1976, Vanden Berghe and De Meyer 1976). A derivation of these summations is presented for non-negative even z, and the result is then extended to appropriate complex z by a simple argument.

The critical equation is the trivial identity $1=r_{12} / r_{12}$, where r_{12} is the distance between the two vectors \boldsymbol{r}_{1} and \boldsymbol{r}_{2}. We employ the Neumann expansions for $1 / \boldsymbol{r}_{12}$ (Gradshteyn and Ryzhik 1965, p 1027)

$$
\begin{equation*}
\frac{1}{r_{12}}=\frac{1}{r_{>}} \sum_{i=0}^{\infty} u^{\prime} P_{i}(\cos \theta) \tag{2}
\end{equation*}
$$

and for r_{12} (Jen 1933, pp 542-3)

$$
\begin{equation*}
r_{12}=r_{>} \sum_{j=0}^{\infty}\left(-\frac{u^{\prime}}{2 j-1}+\frac{u^{\prime+2}}{2 j+3}\right) P_{l}(\cos \theta) \tag{3}
\end{equation*}
$$

where the P_{j} are Legendre polynomials of the cosine of the angle between \boldsymbol{r}_{1} and \boldsymbol{r}_{2} and $u=r_{<} / r_{>}$, where $r_{<}$and $r_{>}$are the lesser and greater of r_{1} and r_{2}, respectively. Hence

$$
\begin{equation*}
1=\frac{r_{12}}{r_{12}}=\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} u^{k}\left(-\frac{u^{\prime}}{2 j-1}+\frac{u^{\prime+2}}{2 j+3}\right) P_{i}(\cos \theta) P_{k}(\cos \theta) . \tag{4}
\end{equation*}
$$

[^0]Since

$$
P_{i}(\cos \theta) P_{k}(\cos \theta)=\sum_{l=0}^{\infty}(2 l+1)\left(\begin{array}{lll}
l & j & k \tag{5}\\
0 & 0 & 0
\end{array}\right)^{2} P_{l}(\cos \theta),
$$

(Messiah 1965, p 1057), equation (4) yields

$$
\mathrm{I}=\sum_{i=0}^{\infty}(2 l+1) P_{l}(\cos \theta) \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} u^{k}\left(-\frac{u^{j}}{2 j-1}+\frac{u^{j+2}}{2 j+3}\right)\left(\begin{array}{lll}
l & j & k \tag{6}\\
0 & 0 & 0
\end{array}\right)^{2} .
$$

We now replace k with m, where $m=j+k$, to obtain

$$
1=\sum_{l=0}^{\infty}(2 l+1) P_{l}(\cos \theta) \sum_{m=0}^{\infty} \sum_{j=0}^{m} u^{m}\left(-\frac{1}{2 j-1}+\frac{u^{2}}{2 j+3}\right)\left(\begin{array}{ccc}
l & j & m-j \tag{7}\\
0 & 0 & 0
\end{array}\right)^{2} .
$$

The 3-j symbol vanishes unless $l \leqslant j+m-j=m$, so

$$
1=\sum_{l=0}^{\infty}(2 l+1) P_{l}(\cos \theta) \sum_{m=t}^{\infty} \sum_{j=0}^{m} u^{m}\left(-\frac{1}{2 j-1}+\frac{u^{2}}{2 j+3}\right)\left(\begin{array}{ccc}
l & j & m-l \tag{8}\\
0 & 0 & 0
\end{array}\right)^{2} .
$$

Let $n=m-l$, so $m=l+n$. Then

$$
1=\sum_{i=0}^{\infty} u^{i}(2 l+1) P_{i}(\cos \theta) \sum_{n=0}^{\infty} \sum_{j=0}^{l+n} u^{n}\left(-\frac{1}{2 j-1}+\frac{u^{2}}{2 j+3}\right)\left(\begin{array}{ccc}
l & j & l-j+n \tag{9}\\
0 & 0 & 0
\end{array}\right)^{2} .
$$

The $3-j$ symbol vanishes unless $l+j+l-j+n=2 l+n$ is even, so $n=2 k$, where k is a natural number. Furthermore, the symbol is zero unless $l+j \geqslant l-j+2 k$ (i.e., $j \geqslant k$), so

$$
1=\sum_{l=0}^{\infty} u^{l}(2 l+1) P_{l}(\cos \theta) \sum_{k=0}^{\infty} \sum_{j=k}^{l+2 k} u^{2 k}\left(-\frac{1}{2 j-1}+\frac{u^{2}}{2 j+3}\right)\left(\begin{array}{ccc}
l & j & l-j+2 k \tag{10}\\
0 & 0 & 0
\end{array}\right)^{2} .
$$

Since the symbol vanishes unless $j \leqslant l+l-j+2 k$ (i.e., $j \leqslant l+k$),

$$
\begin{align*}
& \delta_{l, 0}=\sum_{k=0}^{\infty} \sum_{l=k}^{l+k} u^{2 k}\left(-\frac{1}{2 j-1}+\frac{u^{2}}{2 j+3}\right)\left(\begin{array}{ccc}
l & j & l-j+2 k \\
0 & 0 & 0
\end{array}\right)^{2} \\
&=\sum_{k=0}^{\infty} \sum_{l=0}^{l} u^{2 k}\left(-\frac{1}{2 j+2 k-1}+\frac{u^{2}}{2 j+2 k+3}\right)\left(\begin{array}{ccc}
l & j+k & l-j+k \\
0 & 0 & 0
\end{array}\right)^{2} . \tag{11}
\end{align*}
$$

The coefficient of u° is

$$
\delta_{l, 0}=\sum_{j=0}^{l} \frac{1}{2 j-1}\left(\begin{array}{ccc}
l & j & l-j \tag{12}\\
0 & 0 & 0
\end{array}\right)^{2},
$$

which is equivalent to equation (1) of II. We then obtain

$$
\begin{gather*}
0=\sum_{k=0}^{\infty} \sum_{j=0}^{l} u^{2 k+2}\left(-\frac{1}{2 j+2 k+1}\left(\begin{array}{ccc}
l & j+k+1 & l-j+k+1 \\
0 & 0 & 0
\end{array}\right)^{2}\right. \\
\left.+\frac{1}{2 j+2 k+3}\left(\begin{array}{ccc}
l & j+k & l-j+k \\
0 & 0 & 0
\end{array}\right)^{2}\right) \tag{13}
\end{gather*}
$$

We now set the coefficients of the powers of u equal to zero:

$$
\begin{array}{r}
0=\sum_{j=0}^{i}\left(-\frac{1}{2 j+2 k+1}\left(\begin{array}{ccc}
l & j+k+1 & l-j+k+1 \\
0 & 0 & 0
\end{array}\right)^{2}\right. \\
\left.+\frac{1}{2 j+2 k+3}\left(\begin{array}{ccc}
l & j+k & l-j+k \\
0 & 0 & 0
\end{array}\right)^{2}\right) . \tag{14}
\end{array}
$$

Since
$\left(\begin{array}{ccc}l & j+k+1 & l-j+k+1 \\ 0 & 0 & 0\end{array}\right)^{2}=\frac{(2 k+1)(l+k+1)}{(2 l+2 k+3)(k+1)}\left(\begin{array}{ccc}l & j+k & l-j+k \\ 0 & 0 & 0\end{array}\right)^{2}$,
$0=\sum_{j=0}^{l}\left(-\frac{1}{2 j+2 k+1} \frac{(2 k+1)(l+k+1)}{(2 l+2 k+3)(k+1)}+\frac{1}{2 j+2 k+3}\right)\left(\begin{array}{ccc}l & j+k & l-j+k \\ 0 & 0 & 0\end{array}\right)^{2}$.
From equation (5) of II
$0=\sum_{j=0}^{l}\left(-\frac{1}{2 j+2 k+1} \frac{(2 k+1)(l+k+1)}{(2 l+2 k+3)(k+1)}+\frac{1}{2 j+2 k+3}\right)\left(\begin{array}{ccc}l & j & l-j \\ 0 & 0 & 0\end{array}\right)^{2}$.
If we let $z=2 k+2$, we obtain

$$
0=\sum_{i=0}^{1}\left(-\frac{1}{2 j+z-1} \frac{(z-1)(2 l+z)}{(2 l+z+1) z}+\frac{1}{2 j+z+1}\right)\left(\begin{array}{ccc}
l & j & l-j \tag{18}\\
0 & 0 & 0
\end{array}\right)^{2},
$$

which is equivalent to equation (3) of II.
It is at first surprising that such apparently complicated expressions can be derived in a straightforward manner from so trivial an identity as $1=r_{12} / r_{12}$.

To generalize equation (18) to complex z such that the summation makes sense, we first note that the expression is a finite sum of rational functions of z, so the expression itself is a rational function of z. It is well known that a rational function which has infinitely many zeros is identically zero. Since equation (18) holds for positive even z, it is valid for all z such that the sum makes sense.

The question arises as to whether more identities can be found by examining the Neumann expansions for the equations $r_{12}^{2} / r_{12}^{2}=1, r_{12}^{3} / r_{12}^{3}=1$, etc. The author worked out the first equation and could not find any interesting identities. However, it was necessary to evaluate the summation

$$
\sum_{l^{\prime}=0}^{1}\left(\begin{array}{ccc}
l & l^{\prime} & l-l^{\prime} \tag{19}\\
0 & 0 & 0
\end{array}\right)^{2}
$$

which was found to equal $(2 l)!!/((2 l+1)!!)$ by the same recursive process as was used in equations (4) through (10) of II. This result raises the possibility of evaluating any summation of the form

$$
{ }_{s} M_{l}(z)=\sum_{l=0}^{l} \frac{1}{\left(2 l^{\prime}+z-1\right)^{s}}\left(\begin{array}{ccc}
l & l^{\prime} & l-l^{\prime} \tag{20}\\
0 & 0 & 0
\end{array}\right)^{2}
$$

in a similar manner. However, if $s=2$, the only easily evaluable case seems to be $z=0$, in which case the sum equals 1 if $l=0$ and $(2 l)!!(2 l-2)!!((2 l+1)!!(2 l-1)!!)^{-1}$ for positive integral l. Because of the difficulty in evaluating the summation for general z and larger s, it was decided to defer further consideration of these summations until they arise in a physical problem.

It has been pointed out (I P Grant, private communication) that one can exploit the Regge symmetry by interchanging rows and columns to see that

$$
\left(\begin{array}{ccc}
l & l^{\prime} & l-l^{\prime} \tag{21}\\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
l & \frac{1}{2} l & \frac{1}{2} l \\
2 l^{\prime}-l & \frac{1}{2} l-l^{\prime} & \frac{1}{2} l-l^{\prime}
\end{array}\right)
$$

(Landau and Lifshitz 1965, pp 405-6). This symmetry allows us to express our relations in a form involving more familiar sums on the lower indices.

Acknowledgments

I would like to thank D B Abraham, I P Grant, and N C Pyper for their encouragement and advice while I worked on this problem at Oxford. I am also grateful to the Marshall Aid Commemoration Commission for awarding me a scholarship, which made my study at Oxford possible.

References

Gradshteyn I S and Ryzhik I M 1965 Table of Integrals, Series, and Products (London: Academic Press) Jen C K 1933 Phys. Rev. 43540
Landau L D and Lifshitz E M 1965 Quantum Mechanics (Oxford: Pergamon)
Messiah A 1965 Quantum Mechanics vol. 2 (Amsterdam: North-Holland)
Morgan III J D 1975 J. Phys. A : Math. Gen. 8 L77-9

- 1976 J. Phys. A : Math. Gen. 9 1231-3

Rashid M A 1976 J. Phys. A: Math. Gen. 9 L1-3
Vanden Berghe G and De Meyer H 1976 J. Phys. A: Math. Gen. 9 L5-7

[^0]: \dagger Present address: Department of Chemistry, University of California, Berkeley, Ca. 94720, USA.

