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Abstract. Some recently discovered identities involving 3-j symbols are derived from the 
equation 1 = r , 2 / r 1 2 .  Although the derivation applies only to non-negative even z ,  the result 
is extended to complex z since a rational function which has infinitely many zeros vanishes 
identically. A few summations similar to the previously discovered ones are discussed, and 
it is noted that application of the Regge symmetry to this class of summations brings them 
into a more familiar form. 

Recently it has been proved that 

(1) 
)(: 1':J I - l ' + J  ) = 0  

1 - ' z ( 2 1 + 2 + 1 )  1 
0 Sl,J(z)= 1 ( 

' ' - 0  (21+z)(z- l )  2 1 ' + z + l  2 I ' + z - 1  

for all non-zero z such that the sum makes sense, where J is a natural number and 1 is a 
natural number divided by 2 (Morgan 1976, to be referred to as 11). The particular cases 
of z = 0 and z = 2 have been discussed previously (Morgan 1975, Rashid 1976, Vanden 
Berghe and De Meyer 1976). A derivation of these summations is presented for 
non-negative even z ,  and the result is then extended to appropriate complex z by a 
simple argument. 

The critical equation is the trivial identity 1 = r12/r12, where r12 is the distance 
between the two vectors r l  and r2.  We employ the Neumann expansions for l / r 1 2  
(Gradshteyn and Ryzhik 1965, p 1027) 

and for r12 (Jen 1933, pp 542-3) 

where the P, are Legendre polynomials of the cosine of the angle between r l  and r2 and 
U = r < / r , ,  where ri and r> are the lesser and greater of rl  and r2,  respectively. Hence 
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Since 

(Messiah 1965, p 1057), equation (4) yields 

m c u m  
U 1  , U ” ’ )  ( 1  j k)’ 

l = O  k = O  j = O  2j -1  2 / + 3  0 0 0 1 = 1 ( 2 1 + 1 ) ~ 4 ~ 0 ~  e )  c 1 U * (  -- * (6) 

We now replace k with m, where m = j + k, to obtain 

The 3-j  symbol vanishes unless 1 s j + m - j = m, so 

L e t n = m - I , s o m = i + n .  Then 

The 3-j symbol vanishes unless 1 + j  + 1 - j + n = 21 + n is even, so n = 2k, where k is a 
natural number. Furthermore, the symbol iszero unless I + j 2 1 - j + 2k (i.e., j 2 k), so 

Since the symbol vanishes unless j S I + 1 - j + 2k (i.e., j S I + k), 

1 00 ti-k 

k = O  j = k  0 
U 2  )(: j;k 1 - j + k  + 1 

2 j + 2 k - 1  2 j + 2 k + 3  0 

The coefficient of u o  is 

which is equivalent to equation (1) of 11. We then obtain 

i j + k + l  I - j + k + l  
0 O =  k = O  f j = O  u2k+2(-2j+:k+1(0 0 

+ 
0 



Derivation of some relations involving 3-j symbols 

We now set the coefficients of the powers of U equal to zero: 

I j + k + l  I - j + k + l  
0 

0 + 

Since 
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( 1 4 )  

( 1 5 )  
I j + k + l  l - j + k + l  2 ( 2 k + l ) ( / + k + l )  I j + k  I - j + k  

(0 0 0 ) = ( 2 1 + 2 k + 3 ) ( k + l )  

1 (2k  + 1 ) ( / +  k + 1 )  + 1 )(; j ; k  I - j + k  
j + 2 k + l  ( 2 1 + 2 k + 3 ) ( k + l )  2 j + 2 k + 3  0 

From equation ( 5 )  of I1 

J j + 2 k + 1  ( 2 1 + 2 k + 3 ) ( k + 1 )  2 j + 2 k + 3  0 0 0 
1 ( 2 k + l ) ( I + k + l )  + 

If we let z = 2k + 2 ,  we obtain 

) ( ’  j I-’)’ (18) 1 (2 - 1) (21+2)  + 
j + z - l  ( 2 1 + 2 + 1 ) 2  2 j + z + l  0 0 0 ’ 

which is equivalent to equation (3) of 11. 
It is at first surprising that such apparently complicated expressions can be derived in 

a straightforward manner from so trivial an identity as 1 = rI2/rl2.  
To generalize equation ( 1 8 )  to complex z such that the summation makes sense, we 

first note that the expression is a finite sum of rational functions of z ,  so the expression 
itself is a rational function of z .  It is well known that a rational function which has 
infinitely many zeros is identically zero. Since equation (18) holds for positive even z ,  it 
is valid for all z such that the sum makes sense. 

The question arises as to whether more identities can be found by examining the 
Neumann expansions for the equations r&/rf2 = 1 ,  r;2/r;2 = 1 ,  etc. The author worked 
out the first equation and could not find any interesting identities. However, it was 
necessary to evaluate the summation 

( 1  ; ‘,”)’ 
/‘=O 0 

which was found to equal ( 2 / ) ! ! / ( ( 2 1 +  l ) ! ! )  by the same recursive process as was used in 
equations ( 4 )  through (10) of 11. This result raises the possibility of evaluating any 
summation of the form 

in a similar manner. However, ifs = 2,  the only easily evaluable case seems to be z = 0, 
in which case the sum equals 1 if I = 0 and (21)!! (21-2)!! ( (21+ 1 ) ! ! ( 2 f  - l)!!)-’ for 
positive integral 1. Because of the difficulty in evaluating the summation for general z 
and largers, it was decided to defer further consideration of these summations until they 
arise in a physical problem. 
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It has been pointed out (I P Grant, private communication) that one can exploit the 
Regge symmetry by interchanging rows and columns to see that 

(Landau and Lifshitz 1965, pp 405-6). This symmetry allows us to express our relations 
in  a form involving more familiar sums on the lower indices. 
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